国产免费播放一区二区-国产免费a视频-国产免费a v吧在线观看不卡-国产免费91视频-天天干天天干-天天干天天插天天操

技術文章您現在的位置:首頁 > 技術文章 > ClickChemistry點擊化學疊氮試劑Azide Plus and Picolyl Azide Reagents

ClickChemistry點擊化學疊氮試劑Azide Plus and Picolyl Azide Reagents

更新時間:2023-04-22   點擊次數:981次

Azide Plus and Picolyl Azide 試劑

Kinetic comparison of conventional azide
(Figure 1). Kinetic comparison of chelating azide and non-chelating conventional azide.

Recent advances in the design of copper-chelating ligands, such as THPTA or BTTAA that stabilize the Cu(I) oxidation state in aqueous solution, improve the kinetics of the copper-catalyzed azide-alkyne cycloaddition (CuAAC) reaction and greatly increase the sensitivity of alkyne detection. Copper-chelating ligands have also been shown to increase the biocompatibility of the CuAAC reaction by preventing the copper ions from causing biological damage1. The next step in improving the CuAAC reaction was the development of copper-chelating azides as more reactive substrates. Since it is speculated that the Cu(I)-azide association is the rate-determining step in the CuAAC catalytic cycle2, the introduction of a copper-chelating moiety at the azide reporter molecule allows for a dramatic raise of the effective Cu(I) concentration at the reaction site, enhancing the weakest link in the reaction rate acceleration(Figure 2). It has been proposed that the high reactivity of chelating azides comes from the rapid copper-azido group interaction which occurs prior to Cu(I) acetylide formation, and this renders the deprotonation of alkyne in the rate-determining step3. This concept was successfully exploited to perform CuAAC reactions using pyridine-based copper-chelating azides (picolyl azides) as substrates4-6. Nevertheless, the copper-chelating motif of picolyl azide molecules is not complete, requiring the presence of a copper chelator (e.g. THPTA) to achieve significant improvement in the kinetics of the CuAAC reaction3, 4.

In efforts to improve the performance of the CuAAC reaction in complex media, Click Chemistry Tools developed new chelating azides with a complete copper-chelating system in their structure, termed “Azides Plus"(Figure 3). These azides are capable of forming strong, active copper complexes and are therefore considered both reactant and catalyst in the CuAAC reaction. Using these types of azides, the CuAAC reaction becomes a bimolecular reaction and displays much faster kinetics compared to the CuAAC reaction performed with conventional azides.

Comparative kinetic measurements for the CuAAC reaction(Figure 4)were performed using an agarose-alkyne resin labeling experiment (3.0 uM CuSO4, with (6.0 uM) or without THPTA ligand) using Cy5 Azide Plus, Cy5 Picolyl Azide, and Cy5 bis-Triazole Azide – the fastest copper-chelating azide that has been reported to date7. As expected, the picolyl azide containing the incomplete copper-chelating motif displays relatively slow reactivity, in particular without the presence of THPTA. The kinetic data shows that completing a copper-chelating moiety greatly enhances reactivity, and importantly does not require the presence of copper-chelating ligands. Interestingly, the copper-chelating azides developed by Click Chemistry Tools display almost identical reactivity in the CuAAC reaction compared to the most reactive copper-chelating azide reported up to now7, bis-triazole azide.

The new copper chelating azides allow the formation of azide copper complexes that react almost instantaneously with alkynes under diluted conditions. This unprecedented reactivity in the CuAAC reaction is of special value for the detection of low abundance targets, improving biocompatibility, and any other application where greatly improved S/N ratio is highly desired.

Selected References:
  1. Steinmetz, N. F., et al. (2010). Labeling live cells by copper-catalyzed alkyne–azide click chemistry. Bioconjug Chem., 21 (10), 1912-6. [PubMed]

  2. Rodionov, V. O., et al. (2007). Ligand-accelerated Cu-catalyzed azide-alkyne cycloaddition: a mechanistic report. J Am Chem Soc., 129 (42), 12705-12. [PubMed]
    Presolski, S. I., et al. (2010). Tailored ligand acceleration of the Cu-catalyzed azide-alkyne cycloaddition reaction: practical and mechanistic implications. J Am Chem Soc., 132 (41), 14570-6. [PubMed]

  3. Simmons, J. T., et al. (2011). Experimental investigation on the mechanism of chelation-assisted, copper(II) acetate-accelerated azide-alkyne cycloaddition. J Am Chem Soc., 133 (35), 13984-4001. [PubMed]

  4. Marlow, F. L., et al. (2014). Monitoring dynamic glycosylation in vivo using supersensitive click chemistry. Bioconjug Chem., 25 (4), 698-706. [PubMed]

  5. Clarke, S., et al. (2012). Fast, cell-compatible click chemistry with copper-chelating azides for biomolecular labeling. Angew Chem Int Ed Engl., 51 (24), 5852-6. [PubMed]

  6. Gaebler, A., et al. (2016). A highly sensitive protocol for microscopy of alkyne lipids and fluorescently tagged or immunostained proteins. J Lipid Res., 57 (10), 1934-1947. [PubMed]

  7. Gabillet, S., et al. (2014). Copper-chelating azides for efficient click conjugation reactions in complex media. Angew Chem Int Ed Engl., 53 (23), 5872-6. [PubMed]

訂購信息(靶點科技國內倉庫):


靶點科技(北京)有限公司

靶點科技(北京)有限公司

地址:中關村生命科學園北清創意園2-4樓2層

© 2024 版權所有:靶點科技(北京)有限公司  備案號:京ICP備18027329號-2  總訪問量:264777  站點地圖  技術支持:化工儀器網  管理登陸

主站蜘蛛池模板: 91伊人国产 | 亚洲欧美视频在线观看 | 国产99久久九九精品免费 | 四虎影视永久在线 | 日韩理论在线 | 波多野的店 | 精品久久久久国产 | 激情一区二区三区成人 | 亚洲欧洲精品成人久久曰 | 午夜日本一区二区三区 | 久久久香蕉 | 国产欧美日本亚洲精品五区 | 欧美一区二区三区香蕉视 | 日韩精品一区二区三区不卡 | 国产亚洲一区二区三区不卡 | 欧美亚洲免费 | 久青草国产视频 | 久久久久777777人人人视频 | 欧美一级久久久久久久大片 | 国产精品一区二区av | 国产码欧美日韩高清综合一区 | 亚洲最新 | 国产欧美日韩精品在钱 | 欧美亚洲三级 | 亚洲图区欧美 | 亚洲精品视频在线播放 | 手机在线观看国产精选免费 | 成人国产一区二区 | 最新亚洲精品 | 亚洲国产欧美自拍 | 欧美日在线观看 | 国产精选免费视频 | 日韩综合第一页 | 欧美在线综合 | 国产一区二区三区不卡免费观看 | 全网毛片免费 | 欧美性野久久久久久久久 | 欧美日韩福利视频 | 国产色综合久久无码有码 | 2021精品国内一区视频自线 | 日韩最新视频一区二区三 |